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Abstract--The prevalent model for ductile shear zones assumes that they develop by progressive simple 
shearing, resulting in a monoclinic fabric in which the vorticity vector is parallel to the shear zone and 
perpendicular to the lineation. But some ductile shear zones exhibit an amount of coaxial flattening, or a fabric 
pattern which appear to be incompatible with the assumptions of plane strain and progressive simple shear. In 
certain sections of the Archean Larder Lake-Cadillac deformation zone (LCDZ), for example, vorticity 
indicators (asymmetric pressure wings, Z-folds, S-C fabrics), best seen on horizontal surfaces, indicate dextral 
transcurrent motion, whereas stretching lineations have variable but steep plunges. In the Proterozoic Mylonite 
Zone (MZ) of south-west Sweden, vorticity indicators combined with foliation and lineafion data suggest a 
continuous change from reverse dip-slip motion close to the footwall to sinistral transcurrent motion adjacent to 
the hangingwall of the zone. Such departures from the ideal progressive simple shear zone pattern may in fact be 
common. Rather than invoke two stages of deformation, we explore the possibility that these patterns could be 
the result of ductile transpression, 

Ductile transpression between relatively rigid walls implies an extrusion of material out of the shear zone. 
When the material cannot slip freely along the boundaries of the zone, the extrusion strain is by necessity 
heterogeneous. In order to explore these heterogeneous strain distributions, we have developed a continuum 
mechanics model in which the 'transpressed' rock is a linear viscous material squeezed upward between two 
parallel, rigid, vertical walls. Transpression is further generalized by modelling oblique (i.e. with a dip-slip 
component) relative displacements of the walls. Models, which can vary in their obliquity and their 'press'/'trans' 
ratio, are examined for their distributions of K-values, strain rate intensity, 'lineation' (direction of maximum 
principal strain rate), 'foliation' (plane perpendicular to the direction of minimum principal strain rate) and 
vorticity. To quantify" the expected petrographic effect of the vortieity when the strain path has triclinic 
symmetry, we introduce a sectional kinematic vorticity number, W~. 

The model predicts 'foliations" and qineations' which vary in orientation and intensity across the zone. In some 
model zones, the w)rticity vector can be nearly parallel to the 'foliation' and perpendicular to the qineation', as 
expected in progressive simple shear, but it can also be locally nearly parallel to the 'lineation', as in the LCDZ. 
Commonly, however, the vorticity vector is not parallel to any of the principal directions of instantaneous strain. 
and the deformation has triclinic symmetry. The pattern of foliations and lineations in the MZ can readily bc 
matched to that in an oblique transpression model zone. 

I N T R O D U C T I O N  

TRANSPRESSION is a popular  concept  for in te rpre ta t ion  of 
both shallow-level deformat ion  zones (e.g. San 
Andreas ,  see Sylvester & Smith 1976, Bfi rgmann 1991) 
and ductile shear zones (e.g. the Archean  Ouet ico  Belt,  
see Hudles ton  el al. 1986, 1988, Borradai le  et al. 1988; 
other  Archean  subprovinces  of the Super ior  Province,  
see Stott el al. 1987: Caledonides ,  see H a n m e r  1981 for 
Newfound land ,  Hut ton  1987 for the British Isles, Ratliff  
et al. 1986 for Spi tzbergen:  late Precarnbr ian Cadomian  

Belt. see D 'Lemos  et al. 1992). One  may in fact dis- 
tinguish two related, but  distinct,  mean ings  of transpres-  
sign m geology. The first mean ing ,  which we might 
describe as its regional tectonic mean ing ,  simply refers 
to the relative displacement  of two regions of the litho- 
sphere moving with respect to each other  in combined  
convergent  and t ranscurrent  mot ion  (Har land  1971); the 
tcctonician is only accessorily concerned  with the way in 
which rocks actually accommodate  this imposed relative 
displacement  of the two regions. For  example,  a combi-  
nat ion of mot ions  along thrust and strike-slip faults, or 
obl ique mot ions  along thrust faults which are nei ther  

vertical nor  horizontal  may be sufficient to demons t ra te  
t ranspression in its t ec ton ic  sense (e.g. Ratschbacher  

1986). The thrust  c o m p o n e n t  of regional  t ranspress ion 

requires a th ickening of the region affected by trans- 
pression,  accompanied  by ei ther  s imul taneous  or later 

erosion. 
A second meaning ,  which might be labelled 'struc- 

tural ' ,  was apparen t ly  in t roduced by Har land  (1971), 
and later kinematical ly  model led  by Sanderson  & Mar- 
chini (1984). Transpress ion ,  in this structural  sense, 
refers to what specifically happens  to a tabular  zone of 
rocks submit ted  to the bounda ry  condi t ions  shown in 
Fig. I : a p lanar  zone (usually steeply dipping) of rock is 

submit ted  by its walls to a s imul taneous  f lat tening (the 
'press '  c o m p o n e n t  of t ranspress ion)  and shearing (the 
'trans" componen t ) .  There  results a ' room prob lem ' ,  
because the p lanar  shear zone is confined at its base and 
laterally. This room problem can only be overcome by 
volume loss or by extruding the material  upward (Fig. 
1). We are concerned  here with this 'structural" mean ing  
of t ranspression.  

In Sanderson  & Marchini ' s  (1984) and Sanderson  & 
McCoss 's  (1991) models ,  the material  in the zone does 
not change volume but  escapes by freely slipping along 
the zone walls in the vertical direct ion (Fig. la) .  In that 

model  (which we shall refer to as the Sanderson  and 
Marchini  t ranspression zone,  or SMTZ) ,  the internal  
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Fig. 1. Transcurrent ductile transpression of a planar deformation 
zone (shaded). Dotted lines represent the trace of originally horizontal 
and continuous marker horizons. (a) Sanderson & Marchini's (1984) 
model in which material at the boundaries of the zone is allowed to slip 
freely in the vertical direction while adhering perfectly in the horizon- 
tal direction. The resulting vclocity field is uniform and strain is 
homogeneous throughout the zone. (b) Ductile transpression with a 
no-slip condition at the zone boundaries as modelled in this study. 
Unlike (a) the velocity field is now approximately parabolic and the 

strain within the zone is heterogeneous. 

flow and strain is uniformly distributed across the zone 
and the vorticity vector is always vertical. But, as Sander- 
son & Marchini (1984) pointed out, sufficient values of 
the flattening component across the zone also cause a 
vertical stretching lineation. It is this departure from the 
symmetry of usual progressive simple shear which we 
want to examine with more realistic models of transpres- 
sion zones. 

Objections to the SMTZ model were already men- 
tioned by Sanderson and Marchini themselves, and 
discussed by subsequent authors. An important mech- 
anical objection is that the model requires that the 
boundaries of the shear zone have strange and unlikely 
frictional properties (Schwerdtner 1989). These bound- 
aries are assumed to be free slipping in the vertical 
direction, i.e. assumed to support no vertical shear 
stress, since the material is homogeneously strained 
during its extrusion. But at the same time these bound- 
aries must not allow slip in the horizontal direction, i.e. 
they must transmit horizontal shear stress, so that the 
transcurrent shear can be imposed on the material in the 

zone (Schwerdtner 1989). Such boundaries could indeed 
be implemented in a physical model, with the rigid walls 
consisting of perfectly lubricated vertical corrugations; 
the perfect lubrication would offer no resistance to the 
extrusion component of the motion, but the corruga- 
tions would transmit the horizontal shear stress. In 
actual ductile domains, however, the presence of the 
two bounding faults, with or without these anisotropic 
frictional characteristics, has not been reported as a 
result of transpression. 

In this study, we develop models of transpression 
zones in which the material within the zone does not slip 
freely along the wall of the zone, in any direction (Fig. 
1 b). It is in principle possible to generate strictly kinema- 
tic displacement field models in which the only require- 
ment is to satisfy the displacement conditions at the 
boundaries of the zone. Schwerdtner (1989) had con- 
cluded that the kinematic treatment of transpression 
may be insufficient and that a dynamical treatment may 
be required, and we indeed found it preferable, and as it 
happens easier, to obtain full continuum mechanics 
solutions to the same boundary value problem. These 
solutions, which thus satisfy both the requirement of 
strain compatibility and that of mechanical equilibrium 
everywhere, avoid a common concern with strictly kine- 
matic models, which is that they may be mechanically 
impossible or unrealistic. The material within the zone is 
modelled as linearly viscous, and we only deal with 
strain rates, which permits the use of the principle of 
superposition and makes the solutions particularly easy 
to obtain. We believe that many features of our results 
are quite robust, and do not depend on rocks being truly 
linearly viscous. Some of the results for the case of 
transcurrent shear, illustrated in Fig. l(b), have already 
been presented (Robin & Cruden 1991 ), but we present 
here the theory for the more general case of oblique 
shear, i.e. when the shear has both strike-slip and dip- 
slip components, and we compare the predicted patterns 
to field examples, 

A feature of all our solutions to the transpression 
problem is that the symmetry of the deformation at 
many points is triclinic, rather than monoclinic. That is, 
the vorticity vector is not parallel to any one principal 
direction of the symmetric strain tensor. We have not 
found in the geological literature any extensive dis- 
cussion of triclinic deformation, but it is possible, even 
likely, that triclinic deformation symmetry is common in 
nature. Although we do not speculate on the petro- 
graphic expression of triclinic deformation, we propose, 
and calculate for our model, a "sectional" kinematic 
vorticity number, W~, to quantify an expected petro- 
graphic expression of the vorticity. 

TWO POSSIBLE EXAMPLES OF 
TRANSPRESSION ZONES 

Transpressive regimes have been proposed for several 
domains deformed under mesozonal conditions, and we 
describe below two such areas, both from Precambrian 
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Fig. 2. Geology and major structures of the Kirkland Lake area (after Jensen 1985). Syenitic plutons: hachured pattern, 
Timiskaming Group metasediments and metavolcanics: dotted pattern. LDCZ = Larder Lake-Cadillac deformation zone. 

Arrow points to locations of photographs in Fig. 4. 

shields. We present important features of the distri- 
bution of their strain fabrics in order to compare them 
with the predictions of our models. 

The A rchean Larder  L a k e - C a d i l l a c  break  

Transpression has been proposed for many of the 
E-W-trending subprovince and intraprovince bound- 
aries of the Archean Superior Province (Stott et al. 1987, 
Williams et al. 1991). Common characteristics of such 
zones include: subvertical transposition foliations; 
upright folds oblique to zone boundaries; non-plane 
(flattening) strains; the presence of shear-sense indi- 
cators on sub-horizontal surfaces; and mineral/shape 
(i.e. stretching) lineations which vary from subhorizon- 
tal (e.g. Quetico-Shebandowan, see Borradaile & Spark 
1991, Hudleston et al. 1988) to subvertical (e.g. Larder 
Lake-Cadillac deformation zone, see Robert 1989). 
Dextral transpression has been proposed in all of these 
studies, with synchronous, approximately N-S shorten- 
ing and nearly E-W dextral shear (Borradaile & Spark 
1991 ). 

The Larder Lake-Cadillac deformation zone (LCDZ, 
Fig. 2) is a major (>300 km long), E-W-trending, Au- 
bearing, intraprovince boundary within the Abitibi sub- 
province of the Archean Superior Province (Jackson & 
Fyon 1991). In the Kirkland Lake area (Fig. 2), the 
LCDZ separates the 2.68-2.67 Ga old alkalic volcanic- 
clastic sedimentary Timiskaming Group to the north, 
from the 2705 Ma mafic volcanic-turbidite sedimentary 
Larder Lake Group to the south (Jensen 1985, Jackson 
& Fyon 1991). Recent seismic reflection surveys in the 
region indicate that the LCDZ dips steeply southward to 
a depth of at least 15 km (Jackson et al. 1990). At the 
surface, the LCDZ is a zone, up to I km wide, of intense 
ductile fabric development and alteration. Three 

separable phases of ductile fabric development have 
been identified within the LCDZ and on either sides 
(Toogood & Hodgson 1986, Hodgson & Hamilton 
1989, Cruden 1991). The earliest phase, D i, is that of 
interest in the present discussion; it is responsible for the 
bulk of the deformation in the LCDZ, and for the most 
significant aspects of the fabric and structures observed 
in outcrops (Wilkinson d: Cruden 1992). Strain and 
related metasomatic alteration associated with D I show 
a markedly heterogeneous distribution. In the Timis- 
kaming Group, north of the LCDZ, it produced E-W- 
trending, upright to N-verging folds, and local fault 
repetition of strata. To the south, in the Larder Lake 
Group metasediments, D~ formed tight E-W-trending 
folds. Approaching the LCDZ, folds tighten and a 
penetrative bedding parallel cleavage is developed. 
Within the zone itself, D1 is defined by a strong, flatten- 
ing shape foliation or chloritic schistosity, a steeply but 
variably plunging stretching lineation (Fig. 3) and by 
strong carbonate _+ chlorite + talc alteration. In NW- 
SE- and NE-SW-trending segments of the zone, shear- 
sense indicators on horizontal planes suggest dextral and 
sinistral transcurrent motion respectively. Southeast of 
Dobie, for example, the LCDZ trends NW-SE (Fig. 2), 
the foliation dips steeply south, and the lineation, de- 
fined by strong clast elongation, plunges ca 60°E. Yet, 
dextral shear-sense indicators (rotated clasts in meta- 
conglomerate) are well defined on horizontal erosional 
sections (Fig. 4a), but no indicators are observed on 
planes perpendicular to the foliation and parallel to the 
lineation (Fig. 4b). East-west-trending sections of the 
LCDZ record only N-S shortening and vertical exten- 
sion (i.e. coaxial strains). Wilkinson & Cruden (1992) 
interpret these relationships to indicate that D1 in the 
LCDZ resulted from N-S-shortening across a subverti- 
cal zone, producing flattening and vertical extrusion in 
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Fig. 3. Equal-area, lower-hemisphere projection of poles to D~ folia- 
tion (143 poles, Kamb contoured, contour interval 6 o) and Dj 
stretching lineations (filled dots, 68 measurements) from within the 

area of the LCDZ shown in Fig. 2. 

E-W-trending sections, and transpression in NE- and 
NW-trending segments. In the Val d'Or area, 180 km 
east of Kirkland Lake, where the LCDZ trends E to 
ESE, Robert (1989) similarly interprets steep stretching 
lineations, obliquity of foliations to the zone, and shear 
sense indicators visible on horizontal planes, as being 
the result of D 1 dextral transpression. 

The 'Myloni te  Zone ' ,  S W  Sweden 

The Mid-Proterozoic Sveconorwegian orogenic pro- 
vince of south-west Sweden and southern Norway (Fig. 
5a) is divided into several sub-provinces by a network of 
roughly N-S-trending, predominantly W-dipping shear 
zones. Most of these shear zones, exposed between the 
west coast to the Sveconorwegian Front (Fig. 5a), are 
characterized by the presence of proto- to ultramylo- 
nites and well-developed stretching lineations. One im- 
portant example is the 'Myionite Zone' (MZ), which is 
well exposed on the east shore of a prominent peninsula 
(Vfirmlandsn~is) of Lake V/inern (Fig. 5a). Here, the 
MZ consists of a ca 5 km-wide zone of mylonitized 
granites and para- and orthogneisses. Mylonitic folia- 
tions dip uniformly to the west, with an average orien- 
tation of 178°/46°W, parallel to the inferred margins of 
the zone (Fig. 5b) (Stephens et al. 1993). Strong mineral 
stretching lineations show much greater variability (Fig. 
5b), swinging gradually from west, almost down-dip, 
plunges in the eastern part (i.e. the footwall), to oblique 
north-west plunges in the centre, to shallow, northerly- 
trending, strike parallel orientations adjacent to the 
western boundary (hangingwall). Unlike the LCDZ, 
shear-sense indicators (winged porphyroclasts, C - S  fab- 
rics, mica fish, asymmetric extensional shear bands) are 
best observed on X Z  sections of the fabric ellipsoid, as 

would be expected in progressive simple shear zones. 
Unlike simple shear zones, however, they track the 
swing in lineation orientation (Fig. 5b) and indicate 
reverse, dip-slip shear close to the footwall, oblique slip 
in the centre, and sinistral transcurrent shear adjacent to 
the hangingwall (Stephens et al. 1991). A sinistral trans- 
pressive tectonic regime has been inferred for this shear 
zone (Stephens et al. 1993). 

Park et al. (1991) report a similar change of lineation 
orientation across the MZ approximately 90 km to the 
south, around Lake Mj6rn. These authors interpret the 
lineation pattern as due to an early SE-directed thrusting 
(i.e. oblique-left-slip shear) followed by a later E- 
directed thrusting event (i.e. dip-slip shear). However, 
on the basis of the similar mineral parageneses associ- 
ated with all foliations and lineations and of the absence 
of overprinting relationships, Stephens et al. (1993) 
argue that there is no evidence for two separate defor- 
mation events associated with the mylonitization in the 
MZ at Vfimlandsnfis. 

As summarized above, the LCDZ and the MZ show 
fabric and kinematic patterns which are inconsistent 
with those predicted by models of progressive simple 
shear zones. There is evidence that the deformation 
associated with both zones occurred within oblique 
convergent tectonic regimes (i.e. transpression). San- 
derson & Marchini's (1984) SMTZ model does predict: 
(1) non-plane strain; and (2) the local occurrence of 
steep stretching lineations with transcurrent shear-sense 
indicators as observed in the LCDZ. But, because of its 
inherent homogeneity, it cannot account for other com- 
plexities of these zones. We show below that a slightly 
more realistic model of transpression can account for the 
following additional characteristics: (3) evidence for 
coaxial strains in addition to non-coaxial strains; (4) 
systematic variations in lineation orientation across the 
zone; and (5) presence of both transcurrent and dip-slip 
shear. 

THEORY 

In the present work, we develop a dynamic model of 
the stress and strain distribution in a linear viscous 
material confined within a vertical transpression zone. 
We only explore the instantaneous, infinitesimal solu- 
tion. That solution could, in principle, be iterated to 
model large accumulated strains explicitly (e.g. McKen- 
zie 1979, Schmeling et al. 1988). Considering the funda- 
mental oversimplifications inherent to many models, 
including ours (e.g. linear viscous behaviour, preset 
zone boundaries, constant motion parameters), we be- 
lieve that qualitative but judicious extrapolation from 
the instantaneous to the finite strain patterns, when 
required, is sufficient to show their important features 

A major advantage of linear viscosity and infinitesi- 
mal strain, as mentioned earlier, is our consequent 
ability to use the principle of superposition of two 
rheological solutions. 



S t r a i n  a n d  v o r t i c i t y  p a t t e r n s  in t r a n s p r e s s i v e  z o n e s  

Fig. 4. Photographs of fabric relationships in deformed metaconglomeratcs in the Dobic area of the LCDZ (arrowcd in 
Fig. 2). (a) Horizontal erosional surface showing large quartz-feldspar porphyry clast with the long axis inclined to thc trace 
ol 1) i foliation and 'tails' of strongly flattened bedding which curve into the foliation away from the clast, indicating a dextral 
sense of shear. Coin diameter = 2.1 cm. (b)Outcrop surface ca 15 m from (a), subparallel to the D I stretching lineation and 
perpendicular to the D I foliation. Note marked elongation of clasts and the absence of shear-sense indicators, which arc 

presenl on horizontal sections 2 m along strike from location of this photograph. ('oin diameter = 2.4 era. 
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Fig. 6. Principle of superposition of two linear viscous flows. Large 
arrows: movement vectors of the zone boundaries; half arrows: 
horizontal and vertical components of motion at the zone boundaries. 

Superposition of 'press' and 'trans' 

We can model transpression as the superposition of 
the solutions to two boundary-value problems (Fig. 6): 
that of the extrusion of the material, related to the 
'press' component of the wall motion, and that of shear- 
ing parallel to the wall of the zone, related to the 'trans' 
component of the motion. Figure 7 defines the para- 
meters and the co-ordinate system used. The zone is 
assumed to be vertical, with a half-width h, the x-axis is 
horizontal and parallel to the zone, the y-axis is horizon- 
tal and perpendicular to the zone, and the z-axis is 
vertical, with z increasing upward, i.e. in the escape 
direction. The angle which the shear direction makes 
with the horizontal, is/3, which thus describes the obli- 
quity of the transpressive motion. 

The extrusion of a viscous liquid between two rigid 
plates approaching each other is a classic boundary- 
value problem. Jaeger (1962, pp. 140 & ff.) presents a 
solution to it as example of the use of stream functions, 
and gives the result as a velocity field. Appendix A 
derives the corresponding velocity gradient tensor. 

Fig. 5. (a) Map of southern Sweden showing the trace of the Mylonite 
Zone (MZ) in the Sveconorwegian province (SN). Arrow points to 
exposure of the MZ on the cast shore of the V~irmlandsn~is peninsula, 
Lake V~incrn. (b) Equal-area, lower-hemisphere projection of struc- 
tural data collected by M. B. Stephens and C.-H. Wahlgren (Geologi- 
cal Survey of Sweden) from the MZ at V~irmlandsn~is. Open squares: 
poles to mylonitic foliation; filled circles: stretching lineations; great 
circle: average orientation of the foliation in the zone. Lineation 
swings in direction of arrow from down-dip in rocks close to the 
footwall (F) to almost strike-parallel adjacent to the hangingwall (H). 
Kinematic indicators in the zone track the lineation and give reverse 
dip-slip shear close to the footwall and sinistral transeurrent shear 
adjacent to the hangingwall, as predicted by the model of oblique 

transpression summarized in Fig. 13. 
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Fig. 7, Co-ordinate system used in the transpression models and 
definitions of normalized height (Z) and normalized zone width (Y) 

and orientation of the progressive simple shear direction (/3). 
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To Jaeger 's  (1962) rate of approach of each wall toward 
the mid plane, V0, we substitute a strain rate parameter  
q~ = Vo/h; c~ can be viewed as an average rate of flatten- 
ing strain across the zone, comparable to Sanderson & 
Marchini's (1984) parameter  a.  Similarly, the shear 
component  of the wall displacements is described by a 
rate of simple shear, y. It is important  to recognize that q~ 
and V, used to describe the boundary conditions for the 
zone, are only bulk strain rate parameters.  Unlike in the 
SMTZ, the strain here is heterogeneous,  and thus ~ and 
y do not describe the actual flattening and shearing rates 
at any particular point within the zone. A convenient 
parameter  is: f = q~/y, which we also refer to as the 
'press ' / ' t rans '  ratio. For convenience, even though the 
zone is assumed vertical, we shall refer to the side which 
is moving up with respect to the other as the hanging- 
wall, and to the other side as the footwall. 

The total velocity gradient tensor resulting from the 
superposition of the two deformations is given by 
equation (1): 

Ou Ou Ou 

Ox Oy Oz 

OV OV OV 

Ox Oy Oz 

Ow Ow Ow 

Ox Oy Oz 

0 y cos/3 0 

0 _3¢(  1 _ y2) 0 

0 7 sin/3 - 3q:YZ +~(1 - -  y 2 )  

, ( 1 )  

where 
U , V , W  

Y = y/h  

are the components  of velocity; 
is the normalized distance from the central 
symmetry plane of the transpression zone, 
normalized to the half-thickness, h, of the 
zone; and 

Z = z/h is the normalized height above the base of 
the transpression zone. 

This velocity gradient tensor can be separated into its 
symmetric and antisymmetric part  (e.g. see Means et al. 
1980), thus giving the symmetric strain rate tensor, e, the 
antisymmetric rotation rate tensor, ~o, and the corre- 
sponding external vorticitv vector, ~: 

2 
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Model results are thus obtained by calculating the 
strain rate components  along a vertical section, yz,  

normal to the zone, for set values of f and of the 
obliquity,/3. The parameters  which have been calculated 
as a function of position in the zone are discussed below. 

Strain rate ellipsoid parameters 

At each point we first compute the principal directions 
and the principal components  of strain rate, Sl, s2 and s3, 
which can then be used to calculate strain ellipsoid shape 
and strain intensity parameters ,  K and D. 

K-value. For strain rates, as well as for infinitesimal 
strains, both Flinn's k-value and Ramsay 's  K-value (e.g. 
see Ramsay & Huber  1983, p. 200) reduce to: 

K = k = sl - s2 (4) 
S 2 - -  S 3 

As for finite strain, there is no ' l ineation' when K = 0, 
and no 'foliation' when K = 2 .  In practice, a lineation 
may not have any petrographically visible expression 
when K is below a certain critical value, e.g. 0.3 or 0.4. 

Strain rate intensity, D. Similarly, intensity para- 
meters d and D (Ramsay & Huber  1983, p. 202) both 
reduce, but for the same factor of X/2, to: 

D = d = X/2[(s,-~s2i:-+ (S,_ Z ~;:.f):l. (5) 

The factor X/2 is introduced here to normalize the 
results to the strain rate intensity for a simple shear zone 
(i.e. f o r f  = 0): in a progressive simple shear zone which 
would shear homogeneously at the same bulk rate y, D, 
as defined in equation (5), would be 1 everywhere.  

II exy 0 

£',~ --  g zz Ceyz 

0 ey  z -}- 6zz 

(2) 

'Foliation' and ' lineation' 

We refer to the maximum, intermediate and mini- 
mum principal directions of the strain rate ellipsoid as 
the A, B and C direction, respectively, corresponding to 
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the principal strain rate components s~, s2 and s 3. Thus 
the A direction is that of the maximum extension rate, 
s~; we also refer to it as the 'lineation'. The A and B 
directions define a plane of instantaneous flattening, 
which we also call 'foliation'. 

In nature, lineations and foliations are commonly 
interpreted in terms of the principal directions of total 
accumulated strain. Since the strain rate of equation (2) 
is in effect equal to an infinitesimal strain increment, the 
model qineations' and 'foliations', based on principal 
directions of the strain rate tensor, would be correct 
predictors only for small strains. Indeed, since the vorti- 
city (equation 3) is not zero, the principal strain direc- 
tions of the finite strain ellipsoid can, for large strains, 
differ significantly from those of the strain rate tensor. 
The use of qineation' and 'foliation' can therefore 'invite 
over-interpretation of the results', as remarked by F.W. 
Vollmer (personal communication 1993). Nevertheless, 
'lineation' and 'foliation', accompanied by the present 
warning, are useful terms for several reasons. 

(i) They are much easier to read and grasp than their 
terminologically rigorous equivalents. 

(ii) For small accumulated strains, lineations and 
foliations would be close to the 'lineations' and 'folia- 
tions' of the incremental models. 

(iii) The natural prototypes to which the model zones 
are compared are known by their distributions of folia- 
tions and lineations. It is indeed our task below, and the 
very objective of the present work, to try and predict the 
lineations and foliations of a finite strain model from the 
'lineations" and "foliations' of our incremental model. 

Vorticitv 

External vs internal vorticity. The vorticity m calcu- 
lated from equation (3) is the external vorticity, describ- 
ing an average rotation of material lines with respect to a 
fixed, external co-ordinate system. External vorticity 
can be used to predict how principal strain directions for 
small deformations will be rotated, with respect to that 
coordinate system, after large accumulated defor- 
mation. But the vorticity which is expressed in the fabric 
of the rock, that which is estimated with shear-sense 
indicators (designated here also as vorticity indicators), 
is the internal vorticity (Means et al. 1980). The internal 
vorticity tracks the rotation of lines within the rock with 
respect to the principal directions of strain rate. 

In a progressive simple shear zone, or in the SMTZ 
model, the principal strain rate directions around a 
material particle do not rotate with respect to the exter- 
nal co-ordinates as the particle moves; the internal 
vorticity is therefore identical to the external vorticity. 
But in the present model of transpression, a particle 
does in fact change its relative position (Y, Z)  within the 
shear zone, and therefore the principal directions of its 
strain rate rotate with respect to the external reference 
frame. Means et al. (1980) proposed to call spin the 
rotation of the principal directions of strain as a particle 
moves. Appendix B gives the theory and the method 
which have been used to calculate the spin tensor, p, at a 
number of grid points. The magnitude of the spin vector, 

IP[, is found to be always smaller than that of the 
external vorticity, [~]. However,  the former may reach 
25% of the latter at high elevations and for high values of 
the 'press'/ 'trans' ratio f (Appendix B). The spin is 
therefore not always everywhere negligible. Neverthe- 
less, the spin was neglected in the calculation of a 
sectional vorticity number below because such neglect 
makes the computations and the presentation of the 
results easier. 

Kinematic vorticity number. Means et al. (1980) 
noted that a parameter  to quantify the development of 
shear-sense indicators should normalize the internal 
vorticity to the strain rate intensity. A convenient para- 
meter to that effect is the three-dimensional kinematical 
vorticity number, defined by Truesdell (1953 as 

lar 
Wk = X/Z(s~ + s~ + s3)" (6) 

In the usual case of plane isovolumetric strain, in which 
s2 = 0 and sl + s3 = 0, e q u a t i o n  (6)  reduces to: 

Wk = Inl (7) 
S1 - -  S 3 

A vorticity vector can be viewed as a rotation axis; the 
geologist should expect to see the vorticity indicator best 
displayed on a face normal to the internal vorticity 
vector, at least in an initially isotropic rock. We propose 
to call the plane normal to the vorticity vector the 
vorticity profile plane. For the geologist examining the 
vorticity profile plane for shear-sense indicators, a three- 
dimensional kinematic vorticity number more appropri- 
ate than Truesdeli 's Wk, is a sectional kinematic vorticity 
number, WE, in which the vorticity is normalized to the 
sectional strain in the vorticity profile plane: 

W ~ -  I~l (8) 
- 

where s~ and s~ are the principal components of sectional 
strain. W E reduces of course to W k in the case of plane 
strain. For the strain given in equations (2) and (3), a 
laborious but otherwise straightforward derivation 
yields: 

, ,  , ( % ,  + 

Wk = V' [ :Xdv + dO] + + (9) 

As discussed in the preceding section and in Appendix 
B, the sectional vorticity number calculated with this 
formula and represented in Fig. 10 is not quite accurate 
when f a n d  Z are high and Yis between 0.15 and 0.3. 

Implementation 

All calculations were carried out with TRPR.M,  a 
program written in the MATLAB language. MATLAB 
is a high-level interpreter/compiler language specialized 
in efficient numerical matrix operations. The diagonali- 
zation of the strain in equation (2) was thus done 
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numerically from the values of the strain components  
calculated at grid points on a Y Z  section. 

RESULTS 

Results are presented for two cases of ' t ranscurrent '  
transpression (fl = 0° , f  = 0.1 and f =  1) and one case of 
oblique transpression (fl = 75 °, f = 1.51. Since for a 
given elevation, Z, and a given distance, Y, from the 
mid-plane, the strain is independent of X, we only need 
to show the results on a Y Z  profile in each case. 

It is necessary to recall that the ' lineations' and 'folia- 
tions' presented are only predicted by the A and the C 
directions of the instantaneous strain rate ellipsoid. One 
of the results discussed below is that the sectional vorti- 
city number,  Wi~, is everywhere close to 1, i.e. close to its 
value for progressive simple shear. We can therefore 
anticipate that, with time, accumulated deformation will 
bring both foliations and lineations into closer paralle- 
lism with the zone boundaries. This uniformly high value 
of W~ also suggests that vorticity indicators might be 
observed everywhere in the zone. 

Another  result is that the K-value can vary from 1 to 0 
within a single zone. The ' l ineation'  may therefore not 
be expressed petrographically everywhere;  we may 
assume for example that no lineation would be visible 
when K < 0.3 or 0.4. We have not investigated in what 
way large accumulated strains would affect the value of 
K as calculated from the instantaneous strain. 

' Transcurrent' transpression 

Figures 8-11 summarize results for the two cases 
( f  = 0.1 and , /=  1) of dextral, transcurrent transpression 
( i ~ -  0°) - 

Fabric pattern. All transcurrent models have sym- 
metric fabric patterns: any one vertical line in the mid- 
plane is a two-fold axis of symmetry.  In profiles, 'folia- 
tions" show an inward increase in apparent  dip, and are 
vertical in the centre of the zone (Figs. 8a & b and 9b). In 
horizontal sections (Figs. 8a and 9a), the 'foliation' 
changes orientation across the zone: from striking at a 
low angle to the zone at its boundaries, it swings to 45 ° to 
the zone boundaries near the midplane. This appears  to 
be in contrast with a transcurrent simple shear zone 
(Ramsay & Graham 1970), in which the foliation pattern 
swings from 45 ° to the zone near the walls to a lesser 
angle in the centre. These two patterns are not strictly 
comparable,  however,  since that shown here is for an 
incremental strain, whereas the pattern commonly 
associated with a Ramsay and Graham shear zone is for 
accumulated strains; the pattern of 'foliation" trajec- 
tories in a vertical Ramsay and Graham shear zone 
would in fact be a set of straight lines at 45 ° to the zone 
boundaries. The difference between the strike of the 
'foliation" and that of the zone boundaries, which is 
greatest in the centre, decreases with higher "press" 
components.  

Variations in the plunge of the ' l ineation' across a 
zone are strongly dependent  on the magnitude of the 
'press '  component .  It can be shown that f o r , f <  1/(3X/2) 
= 0.236, the ' l ineation'  is horizontal along the midplane 
( Y =  01 regardless of the elevation Z, whereas it is 
vertical, again regardless of the elevation Z, when 
f >  0.236. For f =  0.236, K = 0 on the midplane and 
there is no ' l ineation'.  In the SMTZ model,  the 
'press ' / ' t rans '  ratio for the similar transition is f =  
1/(2~2) = 0.354. The difference between the SMTZ 
and the present model stems from the fact that the 
"press' component  of the deformation is concentrated in 
the centre of the zone in the present model,  whereas it is 
uniformly distributed in the SMTZ model (see the 
coefficient ~ in equation 1). 

Fabric parameters. The deformation rate intensity, 
D, is, we recall, normalized to the value it would have in 
a non-transpressive zone shearing at the same rate 7 
(equation 5). For both cases illustrated, D is greater 
than, but close to, 1 near the centre and base of the 
zone (Figs. 8c and 9c). From there, D always increases 
upwards in the zone, and, in any one level, always 
increases toward the margins. This is a direct expression 
of the extrusion process. For a strong 'press" component  
( f  = 1), the extrusion process dominates and D >> 1 
throughout most of the zone (Fig. 9c): strain rate 
intensities are much greater than those expected in a 
simple shear zone. 

As stated earlier, K-values are an important measure 
of the predicted petrographic expression of the fabric. 
For a low press component  ( f  = (i. 1. Fig. 8d) an upwards 
narrowing region with K < 0.4 occurs in the centre of the 
zone. Hence, the parts of the zone characterized by a 
horizontal A direction are expected to show little or no 
lineation. In all cases, plane strain conditions, i.e. K ~ 1, 
are found near the zone margins, over a width which 
increases with elevation and with f. With the higher f 
value ( f  = 1, Fig. 9d) K >> 0.4 everywhere except at the 
bot tom of the zone, and is close to 1 over a wide part of 
the outer portions of the zone at high levels. Like the 
strain intensity, these patterns of K wdues are a direct 
consequence of the extrusion process. 

Vorticity. We recall that the external vorticity pre- 
sented here differs slightly from the internal vorticity 
since, as explained and justified in Appendix B, we have 
neglected a spin component .  The external vorticity vec- 
tor is always parallel to the X Z  plane (see equation 3). 
Figures 8(e) and 9(e) show the plungc of the vorticity 
vector, with its sign chosen such that clockwise (or 
dextral) vorticity on the vertical profile is considered 
positive. Variations in the sectional kinematic vorticity 
number,  W/~, are shown in Fig. 111. For f - -  (1.1, W~ 
decreases from a value of 1 at the zone margins to a 
minimum of 0.9884 close to the centre at normalized 
height Z = 8. With f =  1, Wk reaches minimum wllues of 
0.5488 in two narrow regions adjacent to the zone centre 
at normalized height Z = 8. We therefore expect the 
development  of vorticity indicators everywhere in tile 
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zone ,  regardless of  the magnitude of the press com- 
ponent. 

For both f = 0.1 and f = 1, the vorticity vector is 
vertical in the midplane and decreases to shallow 
plunges near the margin. Or, expressed in terms of the 
orientation of the rock faces on which the geologist 
should look for indicators, the vorticity profile plane is 
horizontal in the centre and steepens up toward to 

margins of  the zones.  Comparing Figs. 8(e) and 9(e),  we 
see that a higher 'press' component  leads to a narrower 
zone  with steep plunges of  the vorticity vector and to 
shallower plunges over more of the zone.  For example,  
at normalized level Z = 6, the half-width of the region 
within which the plunge of the vorticity vector is steeper 
than 45 ° is given by 1/(18 f) ,  and is therefore 0.555 h for 
f = 0 . 1 ,  0.222 h for f = 0 . 2 5  and 0.055 h for f = l .  
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'Hanging-wall" is on Y = 1 side. 

is still predicted. Near  the midplane, horizontal linea- 
tions and vertical vorticity indicators are similar to those 
in a simple shear zone or those in a SMTZ with f <  0.354. 
But, as one traverses away from the midplane, the 
lineation and the vorticity vector both rotate to yield an 
oblique, almost dip-slip, zone-side-up kinematic pattern 
near the margin. 

For f =  1, and in fact, as noted earlier, for any f > 
0.236, the vorticity is vertical and parallel to the 'linea- 
tion' in the centre of the zone. Strictly speaking, along 
the midplane, the fabric symmetry is monoclinic, but it is 
clearly not the usual symmetry expected in progressive 
simple shear: the two-fold axis is parallel to the 'linea- 
tion' rather than perpendicular to it. As one moves away 
from the midplane, the fabric becomes triclinic, and 
then becomes close to monoclinic again toward the 
margin. The width of the region within which the fabric 
symmetry effectively departs from the usual symmetry 
depends on the normalized level, Z, and on the ratio, f: 
that width decreases as both parameters  increase. If we 
assume for example that the departure from the usual 
symmetry becomes petrographically detectable when 
the angle between the w)rticity vector and the B direc- 
tion exceeds 25 °, this region decreases from -0 .27  < Y <  
+0.27 at Z = 2, to - i l .07 < Y < +(L()7 at Z = 8. 

The above transcurrent transpression models have 
duplicated a number  of the features shown by the LCDZ 
and MZ: ( 1 ) strains with K-values which may vary from 0 
to 1: (2) departure of the fabric symmetry from that 
expected in simple shear zones; (3) systematic variations 
of the lineation orientation; and (4) coexistence at the 
same exposure level, Z, of transcurrent,  oblique and 
dip-shear. However ,  a major feature of these models is 
their symmetry.  In particular, the two-fold symmetry of 
the models is reflected in the opposite signs of the 
vorticity across the midplane: a transcurrent ductile 
transpression zone should show opposite vorticities, 
related to the extrusion, on opposite walls of that zone. 
We are not aware of any report in the literature of a 
similarly symmetric geological prototype.  It is the asym- 
metry found in natural transpression zones like the MZ 
that we want to model with oblique transpression. 

Oblique transpression 

Clearly, for./" = 1, vorticity is dominated by the extrusion 
process, except very close to the midplane and near the 
base of the zone. 

Zone kinematics. Figure l l summarizes the fabric 
and vorticity pattern predicted for a transcurrent trans- 
pression zone at a normalized height Z = 8 and for the 
two ca se s f  = 0.1 and f =  1. In both cases all levels show 
similar patterns, except for the very lowest (Z < 1.5). 

For a "press'/ ' trans'  ratio f = 0.1 (Fig. l l a )  the rocks 
are predicted to exhibit a nearly monoclinic fabric 
throughout the zone: that is the vorticity indicator is 
always close to orthogonal to the stretching lineation, 
or, stated differently, the vorticity profile plane always 
contains the lineation. However ,  an interesting pattern 

Oblique transpression is, we recall, when fi > 0 °, i.e. 
when the shear direction is oblique, rather than parallel 
to the strike of the zone. A feature common to all cases 
of oblique transpression is that fabric and vorticity 
patterns across the zone are no longer symmetrical 
about a vertical axis through the centre. Furthermore 
they also show considerable depth (Z) dependence. 
Results for the case of sinistral oblique transpression 
withfl = 75 ° and f =  0.15 are presented in Figs. 10(c), 12 
and 13. We have chosen to focus on this particular 
example because it demonstrates how all entirely asym- 
metric fabric and vorticity pattern can occur within a 
general transpression zone. 

Figure 12 shows various parameters  on vertical pro- 
files perpendicular to the zone. The trace of the 'folia- 
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t ion'  in a vertical profile of  the zone shows a distinctly 
asymmetr ic  pat tern (Fig. 12a). Below Z = 2.25 'folia- 
t ions '  dip towards the footwall th roughout  the whole 
width of  the zone.  At  higher levels, the dip direction 
does change along a horizontal  traverse,  and, as Z 
increases, the point  at which the ' fol iat ion'  is vertical 
migrates toward the centre of  the zone.  Deformat ion  
rate intensity values (D, Fig. 12b) are skewed,  with the 
lowest values occurr ing in the lower parts of  the zone on 
the hanging-wall side. Note  that an area with D < 1 is 
found in the hanging-wall half  of  the zone.  K-values 
(Fig. 12c) are lowest in the region centered about  a point 

with co-ordinates  Y = (I.75, Z = 2.8. A small elongate 
region with K < 0.4 (i.e. poorly expressed lineation) 
occurs between Z -  2.3 and Z -  5 near the hanging- 
wail. Exhibit ing a pat tern similar to the dip of  the 
foliation, the vorticity (Fig. 12d) is negative (i.e. sinistral 
senses of  shear) th roughout  the width of  the zone for 
Z < 2.2. Above  this level, extrusions becomes  more  
impor tant ,  and the vorticity shows a reversal similar to 
that in the t ranscurrent  case, with the reversal point 
moving towards the centre as the level rises. 

The sectional kinematic vorticity number ,  B~k, is close 
to 1 everywhere  at the base of  the zone,  with a t rough of  
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lower values on the hanging-wall side (Fig. 10c). This 
trough migrates inwards towards the top of the zone 
where, at Z = 8, the lowest recorded value of W~ = 
0.7651. 

'Foliation" and 'lineation" trajectory maps for two 
horizontal levels of the model are shown in Fig. 13. 
Level Z = 2 is just below the level (see Fig. 12) where the 
fabric pattern changes from entirely asymmetric to skew 
symmetric. Here  (Fig. 13a), the ' l ineations'  rake steeply 
at the footwall and rotate across the zone to the hanging- 
wall where they are parallel to the strike of the 'foliation' 
(Fig. 13a). Vorticity vectors indicate reverse, zone-side- 
up displacement at the footwall and sinistral transcur- 
rent movement  adjacent to the hanging-wall. At this 
level, the fabric symmetry is close to monoclinic 
throughout the zone. Both 'foliation' and 'lineations' 
make a high angle with the zone boundaries. But these 
correspond, we recall, to the principal direction of the 
initial incremental strain; after finite deformation,  the 
external vorticity will cause a steepening of foliations 
and a decrease of the angles which foliations make with 
the margins. Likewise, lineations will also steepen at the 
footwall side because of the horizontal vorticity vector. 
However ,  the vorticity vector is vertical on the hanging- 
wall side, which will result in a rotation of the lineation 
towards the orientation of the margin, without causing a 
significant increase in plunge. The predicted fabric pat- 
tern, after a finite amount  of deformation,  is therefore 
very similar to that shown by the Mylonite Zone,  in 
which the lineation was noted to vary gradually from 

down-dip near the footwall to strike-parallel near the 
hanging-wall (Fig. 5b). 

At level Z = 4 (Fig. 13c), the fabric and vorticity 
pattern is similar to the Z = 2 case for - 1 < Y < + 0.5. 
However ,  both triclinic fabrics and a flip in 'foliation' ,  
' l ineation' and vorticity directions occur at Y - 0.53 (see 
also Z = 4 in Fig. 12). The overall pattern is therefore 
skew symmetric,  with close to dip-slip kinematics re- 
lated to extrusion prevalent throughout the zone except 
for a region near Y = 0.5 where the ' l ineation'  is vertical 
but the vorticity is also vertical (i.e. transcurrent sense of 
shear). 

D I S C U S S I O N  

Sizes and shapes of transpression zones 

Scale and direction of transpression. Transpression 
phenomena  can occur at all scales, from microscopic to 
regional: e.g. a finer-grained matrix escaping between 
two phenocrysts or porphyroblasts;  or a relatively 
incompetent  unit or group of units squeezed from be- 
tween two competent  plutons. In either of these two 
cases, the 'escape '  direction may not be vertical. But the 
original and still usual meaning of transpression is the 
regional one, with the escape direction understood to be 
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Fig. 13. 'Foliation" (solid lines) and 'lineation' (dotted lines) trajectory maps for two horizontal levels (a, Z = 2 and b, 
Z = 4) of the sinistral oblique transpression model with f =  0.15 and/3 - 75 °. Equal-area, lower-hemisphere projections 
show the relationships between the vorticity vector (filled squares) and vorticity profile plane (dotted great circles) and the 
ffoliation' (solid great circles) and 'lineation" (filled circle) at selected points in the zone. Note the asymmetric fabric pattern 
and change from dip-slip to strike-slip kinematics across the zone at Z = 2 in (a). A similar pattern is observed in the 

Mylonite zone (Fig. 5). 

vertical, toward the free surface. One advantage men- 
tioned earlier of a 's tress-strain '  model is that it is 
possible to check on its mechanical soundness quantitat- 
ively. We may therefore ask, for example: can a vertical 
transpression zone really have the thickness of the crust? 

Size  and  pres sure  in a t ranspress ion  zone .  The press- 
ure (i.e. the mean principal component  of stress) in 
excess of lithostatic pressure which develops at the 
bot tom centre of the zone (Z = 0) can be estimated from 
Jaeger 's  (1962, p. 142, section 40) equation 18. It is 
given, as a function of the viscosity, r/, the rate of 
application of the 'press" component ,  q~, and the normal- 
ized height, Zo, of the free erosion surface by: 

A P  -~ ~,lc/)Zo. (10) 

where A is to indicate that this is the value of an 
'overpressure ' ,  i.e. pressure in excess of lithostatic. We 
can investigate equation (10) numerically. Taking, for 
example.  

r] = 1 0  2o Pa s (=  1019 poise), 

q5 = 10 -14 S I 

(i.e. the zone loses 1/10th of its thickness in 1013 s, or 
317,000 years), gives: 

AP = 1.5 × Z{ × 10~Pa = 0.015 x Z~ kbar. 

A zone with a width of 1 km, i.e. h = 0.5 km, and a 
height z0 = 5 km (Z0 = 10), would yield an overpressure 
(i.e. pressure above lithostatic) at the bot tom of 150 
MPa (1.5 kbar),  which is plausible. But if we want z0 = 
10 km (Z0 = 20) for a zone of the same 1 km width and 
same convergence rate, then AP = 600 MPa (6 kbar),  
which seems high. Considering the square dependence 
on depth in equation (10), we see that a transpression 
zone with the height of the crust, e.g. z0 = 30 kin, needs 
to 'press '  at a very low rate, be several-km thick, and/or 
contain material with anomalously low viscosities. 

Generally,  the development  of a regional scale trans- 
pression zone, whether it involves the whole crust or 
not, is favoured where the temperature  and fluid activi- 
ties are high and the viscosity correspondingly low. 
Hutton & Reavy (1992) recently argued that the thick- 
ening of the crust expected from transpression in its 
tectonic sense could be responsible for the generation of 
magmas in the lower crust, at the base of several major 
shear zones. The present considerations suggest in addi- 
tion that once these magmas have moved up and heated 
their hosts, and after erosion has removed part of the 
overburden,  conditions become favourable for trans- 
pression, now in the structural sense, of the magmas and 
of their softened host rocks. Extrusion resulting from 
transpression, in addition to buoyancy, may therefore 
help to drive the upward migration of these magmas.  
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Base of the transpression zone. The present model 
assumes a rather unrealistic boundary condition at its 
base, Z = 0: specifically, the base is a perfectly lubri- 
cated planar surface. The base of a geological transpres- 
sion zone cannot be like that. In view of the limit 
discussed above to the height of a transpressive zone, the 
relative displacement of the two walls has to be trans- 
ferred to a non-transpressive mode at depth. For 
example, a wide, straight vertical transcurrent simple 
shear zone (i.e. non-transpressive) in the lower crust 
could be linked, through some sub-horizontal d6colle- 
ment zones, to vertical but curved zones in the upper 
crust: transcurrent transpression and transtension would 
arise in the upper crust, depending on the local orien- 
tation of the upper crustal zone with respect to that of 
the zone in the lower crust. Furlong & Hugo (1989) 
propose that such transfer along a horizontal d6colle- 
ment is happening eastward of the surface expression of 
the San Andreas Fault in northern California. Oblique 
transpression could occur in the vertical uppermost 
portion of a dipping, non-transpressive oblique shear 
zone, or in the top portion of a listric fault. 

In either the transcurrent or the oblique case, the 
strain field close to the transfer level is not expected to 
resemble that in the ideal model used here. The model is 
therefore not applicable until the observation level is 
sufficiently above the base of the zone. 

Non-Newtonian rheologies 

If ductile transpression proceeds where the rates of 
deformation are slow, and the temperature and fluid 
activity are high, mechanisms such as stress-induced 
diffusion transfer, grain-boundary sliding, hydrolytic 
weakening, reaction softening, etc., may be important 
contributors to the deformation; Newtonian viscosity 
would then be a reasonable approximation. If the visco- 
sity departs significantly from Newtonian, the strain 
field may further break down into subsidiary shear 
zones, as expected with high stress exponent rheologies, 
and into faults, such as the velocity discontinuities 
expected from ideally plastic behaviour. If the slip 
directions and slip senses along these zones are detect- 
able, we propose that they should document the same 
variations in orientations of the extension directions and 
of the vorticity as those predicted by the viscous model. 

Incremental strain, accumulated strain and fabrics 

As exemplified in our presentation of the results, we 
believe that the relation of the foliation resulting from 
the accumulated strain to the instantaneous 'foliation' 
obtained in the model can be qualitatively predicted 
with our knowledge of the vorticity and vorticity num- 
ber. First, as noted earlier, when the deformations are 
small, foliations and lineations should differ little from 
our instantaneous 'foliations" and 'lineations'. For large 
deformations, however, the non-zero vorticity means 
that the foliation and the lineations are progressively 
rotated from their initial orientations. 

In progressive simple shear, such as found near the 
margins of all model transpression zones, the foliation 
and the lineation gradually rotate about the vorticity 
vector toward parallelism with the shear plane and with 
the shear direction, respectively. It is therefore straight- 
forward to infer foliations and lineations from the in- 
cremental 'foliation' and 'lineation' in such parts of the 
z o n e .  

Near the midplane of a transcurrent transpression 
zone, the symmetry of the deformation is monoclinic, 
regardless of whether the 'lineation' is parallel ( f  > 
0.236) or perpendicular ( f <  0.236) to the vertical vorti- 
city vector. By reasons of symmetry, and considering 
that the sectional vorticity number is comparable to, but 
less than 1, it is safe to predict that the foliation will also 
rotate from its initial orientation, at 45 ° to the shear 
zone, toward parallelism with the shear zone. When the 
'lineation' is horizontal, i.e. perpendicular to the vorti- 
city vector, it should remain horizontal and rotate with 
the foliation toward parallelism with the shear direction. 
When the 'lineation' is vertical, and thus parallel to the 
vorticity vector, it should remain so during strain 
accumulation. An exception arises whenf is  greater than 
0.236 but close to it: the 'lineation' is vertical, but 
sufficient accumulated strain can lead to a horizontal 
maximum principal strain direction. Such a 'lineation 
switch' may be of little practical consequence since it 
occurs when K ~ 0, and therefore when the maximum 
extension direction is not expected to be expressed in the 
fabric as a lineation. 

The literature offers no guidance to predict the evol- 
ution of the principal directions of accumulated strains 
for the general case of deformation with triclinic sym- 
metry. We only speculate that the foliation and lineation 
would rotate about the vorticity vector, and since the 
sectional vorticity number, WE, is < 1 everywhere, that 
such rotation would converge toward some stable direc- 
tion rather than pulsate. 

Inferring accumulated strain, and its consequent fab- 
ric, from the model incremental strain is thus not com- 
pletely possible at present. More fundamentally, 
however, as discussed below, a transpressive zone is 
very likely to record more than the strain inherited from 
its transpressive history alone. 

Development and growth of a transpression zone and 
inherited Jbbric 

An actual ductile transpression zone cannot generally 
have been established, at some 'time zero',  with its set 
width, a fixed 'press'/ 'trans' ratio f,  a fixed obliquity fl, a 
fixed viscosity inside and perfectly rigid walls at its 
margins. Instead, a transpression zone has to start as a 
shear zone. As shearing proceeds, the shear zone must 
then expand in size, and/or the material within it must 
soften sufficiently for transpression to become possible, 
somewhere near the surface or some other 'escape' 
boundary. And even after transpression has started, 
there is the possibility that the zone continues to increase 
in size, change in f ,  change in obliquity, etc. Thus, its 
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final width, and the several components of its total strain 
field are really only the integrated results of a long, and 
probably varied, history. The actual fabric observed in a 
transpression zone will therefore record more than the 
transpressive part of its history: it should record the 
history of its progressive development into a shear zone 
and then into a transpression zone. Even within an 
established zone, Treagus & Treagus (1992) have re- 
cently argued that transected folds within transpression 
zones could be best explained by a progressive decrease 
in the 'press'/'trans' ratio throughout the history of the 
zone. These authors also remind readers, in the context 
of transpression, that the relationship of fabrics with 
strain is not uniquely prescribed. Accordingly, the final 
fabric pattern observed in the field has many reasons to 
differ from that in our simple model in ways that could 
not be resolved by simply tracking strain increments into 
a finite strain within a set ductile transpression zone. 

CONCLUSIONS 

The increasing evidence for tectonic transpression 
and for structural transpressive deformation suggests 
that geologists should examine the consequences of 
ductile transpression in more detail. While actual field 
examples of ductile transpression are likely to be more 
complicated than the model zones presented here, they 
should nevertheless record the consequences of hetero- 
geneous deformation which the model predicts. These 
consequences include systematic variations in lineation 
directions across the zone,  and local departures of the 
fabric symmetry from the monoclinic symmetry 
expected in progressive simple shear. The Archean 
Larder Lake-Cadillac deformation zone, in the Cana- 
dian Shield, and the Mid-Proterozoic Mylonite Zone,  in 
the Sveconorwegian orogenic province, exhibit fabric 
patterns and fabric symmetries which match several of 
the model predictions. 

Dynamic models such as the one used here provide 
some quantitative physical constraints on the rates, sizes 
and viscosities of transpressive systems. They suggest in 
particular that ductile transpression on a regional scale 
may be limited in depth to a few kilometres unless 
special geological circumstances provide for several-kin 
wide zones of low viscosities. In the absence of such 
circumstances, transpressive motion in the upper crust 
must be transferred to non-transpressive motion at 
depth. 

General heterogeneous velocity fields are expected 
under many conditions other than just transpression. 
The method used here to calculate vorticity and spin 
should be generally applicable, and the triclinic sym- 
metry of the deformation and of the consequent fabric is 
likely to be a general feature rather than an exception. 
The consequences of triclinic deformation on fabric 
evolution needs to be explored further. 
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APPENDIX A 

THE 'PRESS' COMPONENT OF THE VELOCITY 
GRADIENT TENSOR 

Jaeger (1962, section 40, pp. 14(I & ff., equation 16) gives the 
solution to the extrusion problem as a velocity field. Replacing 
Jacger 's  parameter  V. by q,h, and switching from h i s x y  co-ordinates to 
our z y co-ordinates, his equation (16) for the components  of the 
x clocity lield becomes: 

' v(h2 - 3y2) (Ala )  

z(h 2 - v 2) 
w = ~q- ---~z- - ( A 1 b) 

The only non zero derivatives are easily calculated as: 

hw ,:n' 3 (h 2 _ y2) 
,:~: ;w 5q / ~  (A2a,b) 

imov 3~¢ ~ .  (A2c) 

Replacing y/h and z/h by' Y and Z yields the part of equation (1) which 
is associated with the extrusion. 
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APPENDIX B 

EXTERNAL AND INTERNAL VORTICITY 

In order to evaluate the difference between the internal and the 
external vortieity, it is first necessary to evaluate how the principal 
directions of strain rotate along the path of a particle (e.g. see Means  et 
al. 1980). Since, for given values of Yand  Z, the strain is the same for 
all values of X, we only need to consider the variations of orientation as 
a function of the Y and Z co-ordinates. 

Rotation o f  the principal directions o f  strain between two adjacent 
points in the zone 

Let us call V (Y, Z) the 3 × 3 orthogonal matrix consisting of the 
direction cosines of  the principal directions of the strain rate tensor at 
point ( Y, Z). As discussed in the main text, V is calculated numerically 
with T R P R . M  and yields the directions of ffoliations" and 'lineations" 
at each point. Consider now an adjacent point (Y + dY, Z + dZ). Its 
principal directions differ by a small rotation, dcz, from those at ( Y, Z): 

V ( Y  + dY.  Z + dZ)  : ( / +  da)V (Y, Z). (B1) 

As long as (dY, dZ)  is small and the rotation is therefore also small, the 
matrix da  is antisymmctric.  It can be decomposed into: 

Oa + & x  . 
da = ~ : d Y  g ~ d Z .  (B2) 

Since we have not derived analytical expressions for V. the partial 
derivatives must  be evaluated numerically, c . g  by finite differences: 

Oa ! 

2 ~';[v(Y+ar AY,  Z ) - V ( Y - A Y ,  Z ) ] V ' ( Y , Z )  (B3a) 
OY 

and 

O(L __ I 
aZ 2 z [ V ( Y , Z  + A Z ) -  V ( Y , Z -  A Z ) I V ' ( Y , Z ) .  (B3b) 

To obtain equation (B3) from (BI), we have used the fact that V is an 
orthogonal matrix, and therefore its inverse equals its transpose, The 
spans A y  and AZ used to calculate the finite differences may be 
adjusted, depending on how rapidly the principal directions rotate. 

Changes in normalized co-ordinates o f  a particle during a strain 
increment 

The changes in relative position (Y, Z),  of a particle during a unit 
time must now be calculated. The half-width of the zone changes by 

and since Y = y/h.  

dh 
dt - - q~h (B4) 

dY 1 dy v d h  v v 
d-7= h dt ,~- ~-7-= f i+  q ), 

or, using equation (Ala )  to replace v, 

d Y  1 v(v 2 - 3h 2) V I , 

dt -~_~ " ~ - - - + ¢ ~ : - 5  ' I ~ l l -  v~/ 

Similarly', 

(B5a) 

dZ  3 z(h 2 _ y 2 ) +  z 1 . _ 
d t  - 5 q ~ - f f  r ~  q: -~= g q,Z(,> - 3y2}. (B5b) 

Replacing q, by yf, wc finally' get 

d Y _  ~-fY(1 - y2) (B6a) 
dt 

d-Z-Z : 7-fZ(5 - 3y2). (B6h) 
dt 2 '  

The rotation tensor,  p, for the principal directions of strain around a 
particle during a unit of time is therefore obtained by combining 
equations (B2) and B6): 

SG 16:4~C 
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P = ~ t  = ~ f ( - Y ( 1 -  y2) Oa + z ( 5 -  OY (B7) 

in which, we recall, rotation matrices Oa/OY and aa/OZ are evaluated 
numerically (equation B3). Means et al. (1980) proposed to call p the 
spin tensor. It can be directly compared with to, the antisymmetric part 
of the velocity gradient tensor (equation 3). The internal vorticity is 
described by (w - p). The magnitude of the corresponding rotation 
can be calculated in the same manner as that of the vorticity. Nu- 
merically, because p is only approximately antisymmetric, the magni- 
tude, IPf, is calculated by 

[PI = ~/~(P~.:P:v + p~xpxz + Oxypyx). (B8) 

Rather than calculating p within TRPR.M,  a separate program, 
VORTI.M,  was written to calculate and compare the magnitudes of 
IPI and I1)1 at any point. While the spin magnitude was less than 10% of 
the external vorticity almost everywhere, the ratio LPI/I~I does reach 
significantly higher values, with a maximum, as seen on the transverse 
profile, which depends on the 'press'/ ' trans'  ratio, f,  and the level Z. 
The position of that maximum was for values of I YI ranging from 0.15 
to 0.4. For realistic values o f f ( f <  0.25), and of Z(2 < Z < 8), the 
maximum value of the IPI/If~l ratio varied from 10% (for f = 0. l ,  
Z = 2) to 25% ( f o r f  = 0.25, Z = 2). Although 25% is not negligible, 
we chose to ignore p in calculating the vorticity because of the 
simplification that that provided in the calculation of the sectional 
vorticity number (equation 9) and in the presentation of the results. 


